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A. Residual Plots of Linear Regression Models

The residual plots listed in this section were derived for linear regression model considering
second term of explanatory variables (section 3.6 of the final report). The plot of residual against
length is shown Figure A-1. It can be seen that there is structural pattern in the residual plot and
that the variance of the residual is not constant. There are some outliers in the plot, especially

when the length values are small.
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Figure A-1 Plot of Residual against length
The plot of residual against age at inspection is shown in Figure A-2. It can be seen that there
is structural pattern in the residual plot. Caution shall be taken that the there are some outliers in
the plot, even though the problem is not severe since most of the residuals fall within the range
of £2. The plot of residual against average annual temperature difference is shown in Figure A-3.
No systematic pattern has been found from Figure A-3.
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Figure A-3 Plot of Residual against matdiff
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Figure A-4 Plot of Residual against ADTTins

The plot of residual against average daily truck traffic at inspection (ADTT) is shown in
Figure A-4. A fan shape has been noticed, the variance of the residual tends to decrease with the

increase of ADTT. The plot of residual against maximum span is shown in Figure A-5 and no
obvious deficiency can be found out from the plot.
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Figure A-5 Plot of Residual against maxspan
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B. Design Plan and Bearing Details of Instrumented Bridges

In Task Il of this research project, the bridges chosen to be instrumented are required to have
pin-dowel connection between girder and abutment wall. The design plans and bearing details of
candidate bridges were reviewed to make sure that the instrumented bridges meet the
requirements. The design plan and bearing details of instrumented bridges are shown in Figure
B-1 to Figure B-10.
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C. Analyses of Field Instrumentation Data

All the figures created during the analysis of field data are listed as follows:
C.1 Distribution of Strains
C.1.1 Distribution of strains along abutment walls

The distributions of horizontal strains in the abutment wall of bridge A 1.7 are shown in
Figure C-1 to Figure C-11. Similarly, the distributions of horizontal strains in the abutment walls
of bridges A 2.1, C 2.1, and C 2.4 are shown in Figure C-12 to Figure C-22, Figure C-23 to
Figure C-33, and Figure C-34 to Figure C-44; respectively.
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Figure C-1 Distribution of horizontal strain in abutment wall of Bridge A 1.7 in January 2007
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Figure C-2 Distribution of horizontal strain in abutment wall of Bridge A 1.7 in February 2007
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x 10 A 17 strain in abutment wall # e (May)
[~ ] ] ] ] ] 1 O
—o— Al
— 45— A2
- MiC * --0.01 ’E
A MaC =
‘ - I Rt - o
2+ | I | = ‘002 %
= . =)
7 5
i £
© L -
£ 0 0.03 g
S | [}
=~ J 3
2 \y E
-2+ ‘ o -0.04 E
‘\k | | i 3 3 E
| 1 | | | j2]
| 1 ! | | g
-4 - | | | | : | " 4-0.05 O
L L l i l v l
| | | | | 1 | /N |
N Y
6L ‘ L Y ! L L L I " 1.0.06
0 50 100 150 200 250 300 35 400

distance from the left most measuring point (in.)

Figure C-5 Distribution of horizontal strain in abutment wall of Bridge A 1.7 in May 2007

32



horizontal strain

Figure C-6 Distribution of horizontal strain in abutment wall of Bridge A 1.7 in June 2007
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Figure C-10 Distribution of horizontal strain in abutment wall of Bridge A 1.7 in October 2007

horizontal strain

Figure C-11 Distribution of horizontal strain in abutment wall of Bridge A 1.7 in November 2007
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Figure C-12 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in January 2007
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Figure C-13 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in February 2007
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Figure C-14 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in March 2007
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Figure C-15 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in April 2007
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Figure C-16 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in May 2007

Figure C-17 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in June 2007
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Figure C-18 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in July 2007
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Figure C-19 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in August 2007
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Figure C-20 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in September 2007
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Figure C-21 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in October 2007
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Figure C-22 Distribution of horizontal strain in abutment wall of Bridge A 2.1 in November 2007
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Figure C-23 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in January 2007
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Figure C-24 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in February 2007
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Figure C-25 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in March 2007
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Figure C-26 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in April 2007
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Figure C-27 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in May 2007
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Figure C-28 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in June 2007
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Figure C-29 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in July 2007
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Figure C-30 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in August 2007
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Figure C-31 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in September 2007
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Figure C-32 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in October 2007
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Figure C-33 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in November 2007
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Figure C-34 Distribution of horizontal strain in abutment wall of Bridge C 2.1 in January 2007
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Figure C-35 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in March 2007
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Figure C-36 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in March 2007
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Figure C-37 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in April 2007
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Figure C-38 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in May 2007
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Figure C-39 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in June 2007
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Figure C-40 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in July 2007
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Figure C-41 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in August 2007
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Figure C-42 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in September 2007
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Figure C-43 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in October 2007
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x 10~ C 24 strain in abutment wall # k (November)
r --0.005

* *

-0.01

-1-0.015

-0.02

-1-0.025

--0.03

horizontal strain

-0.035

-1-0.04

Lonaitudinal movement of airder end (in.)

--0.045

* T CJ
-2 |

| | | L 3 | | -0.
0 100 200 300 400 500 600 700 800

* 05
distance from the left most measuring point (in.)

Figure C-44 Distribution of horizontal strain in abutment wall of Bridge C 2.4 in November 2007

C.1.2 Distribution of strains along abutment walls

The distributions of horizontal strains in the backwall of bridge A 1.7 are shown in Figure
C-45 to Figure C-55. Similarly, the distributions of horizontal strains in the backwalls of bridges
A 21,C2.1, and C 2.4 are shown in Figure C-56 to Figure C-66, Figure C-67 to Figure C-77,
and Figure C-78 to Figure C-88; respectively.
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Figure C-45 Distribution of horizontal strain in backwall of Bridge A 1.7 in January 2007

Figure C-46 Distribution of horizontal strain in backwall of Bridge A 1.7 in February 2007

horizontal strain

x 10 A 17 strain in backwall # a (January)
T T T T T T 002
* GM
* =
=
c
(3}
L 410 g
S
©
€
(]
S
(O]
>
o
€
- +4-0.02°®
=
=
2
—4A— Backwall S
* MiC
MaC
| | | | | | | _004
50 100 150 200 250 300 350 400

distance from the left most measuring point (in.)

x 10 A 17 strain in backwall # b (February)
0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.02
-0.01 =
=1
c
()
40 g
5
G
=-0.01 E
0.01 8
(0]
>
o
€
4-0.02°
S
2
2
2L —=4=—Backwall | | 503 S
* MiC
MaC
_25 L | L | L * | L _004
0 50 100 150 200 250 300 350 400

distance from the left most measuring point (in.)

53



x 10° A 17 strain in backwall # ¢ (March)
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Figure C-47 Distribution of horizontal strain in backwall of Bridge A 1.7 in March 2007
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Figure C-48 Distribution of horizontal strain in backwall of Bridge A 1.7 in April 2007
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Figure C-49 Distribution of horizontal strain in backwall of Bridge A 1.7 in May 2007
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Figure C-50 Distribution of horizontal strain in backwall of Bridge A 1.7 in June 2007
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Figure C-51 Distribution of horizontal strain in backwall of Bridge A 1.7 in July 2007
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Figure C-52 Distribution of horizontal strain in backwall of Bridge A 1.7 in August 2007
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Figure C-53 Distribution of horizontal strain in backwall of Bridge A 1.7 in September 2007
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Figure C-54 Distribution of horizontal strain in backwall of Bridge A 1.7 in October 2007
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horizontal strain

Figure C-55 Distribution of horizontal strain in backwall of Bridge A 1.7 in November 2007
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Figure C-56 Distribution of horizontal strain in backwall of Bridge A 2.1 in January 2007
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Figure C-57 Distribution of horizontal strain in backwall of Bridge A 2.1 in February 2007
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Figure C-58 Distribution of horizontal strain in backwall of Bridge A 2.1 in March 2007
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Figure C-59 Distribution of horizontal strain in backwall of Bridge A 2.1 in April 2007

A 21 strain in backwall # e (May)
001 T T T T 0
—4A— Backwall
MiC
MaC

-0.05

horizontal strain
o
Longitudinal movement of girder end (in.)

_0 i 0 1 | 1 1 1 1 1 1 1 _O ) 1
0 50 100 150 200 250 300 350 400 450

distance from the left most measuring point (in.)

Figure C-60 Distribution of horizontal strain in backwall of Bridge A 2.1 in May 2007
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Figure C-61 Distribution of horizontal strain in backwall of Bridge A 2.1 in June 2007
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Figure C-62 Distribution of horizontal strain in backwall of Bridge A 2.1 in July 2007
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Figure C-63 Distribution of horizontal strain in backwall of Bridge A 2.1 in August 2007
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Figure C-64 Distribution of horizontal strain in backwall of Bridge A 2.1 in September 2007
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Figure C-65 Distribution of horizontal strain in backwall of Bridge A 2.1 in October 2007

A 21 strain in backwall # k (November)
001 T T T T T T T _001

0.005 -0.02

-0.03

horizontal strain
o

-0.005 |- -0.04

Longitudinal movement of girder end (in.)

—4— Backwall }
MiC
MaC

_0 i 0 1 | 1 1 1 1 1 1 1 _O ) 05
0 50 100 150 200 250 300 350 400 450

distance from the left most measuring point (in.)

Figure C-66 Distribution of horizontal strain in backwall of Bridge A 2.1 in November 2007
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Figure C-67 Distribution of horizontal strain in backwall of Bridge C 2.1 in January 2007
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Figure C-68 Distribution of horizontal strain in backwall of Bridge C 2.1 in February 2007
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Figure C-69 Distribution of horizontal strain in backwall of Bridge C 2.1 in March 2007
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Figure C-70 Distribution of horizontal strain in backwall of Bridge C 2.1 in April 2007
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Figure C-71 Distribution of horizontal strain in backwall of Bridge C 2.1 in May 2007
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Figure C-72 Distribution of horizontal strain in backwall of Bridge C 2.1 in June 2007
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Figure C-73 Distribution of horizontal strain in backwall of Bridge C 2.1 in July 2007
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Figure C-74 Distribution of horizontal strain in backwall of Bridge C 2.1 in August 2007
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Figure C-75 Distribution of horizontal strain in backwall of Bridge C 2.1 in September 2007
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Figure C-76 Distribution of horizontal strain in backwall of Bridge C 2.1 in October 2007
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Figure C-77 Distribution of horizontal strain in backwall of Bridge C 2.1 in November 2007
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Figure C-78 Distribution of horizontal strain in backwall of Bridge C 2.4 in January 2007
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Figure C-79 Distribution of horizontal strain in backwall of Bridge C 2.4 in February 2007
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Figure C-80 Distribution of horizontal strain in backwall of Bridge C 2.4 in March 2007
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Figure C-81 Distribution of horizontal strain in backwall of Bridge C 2.4 in April 2007
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Figure C-82 Distribution of horizontal strain in backwall of Bridge C 2.4 in May 2007
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Figure C-83 Distribution of horizontal strain in backwall of Bridge C 2.4 in June 2007
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Figure C-84 Distribution of horizontal strain in backwall of Bridge C 2.4 in July 2007
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Figure C-85 Distribution of horizontal strain in backwall of Bridge C 2.4 in August 2007
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Figure C-86 Distribution of horizontal strain in backwall of Bridge C 2.4 in September 2007
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C 24 strain in backwall # j (October)
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Figure C-87 Distribution of horizontal strain in backwall of Bridge C 2.4 in October 2007
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Figure C-88 Distribution of horizontal strain in backwall of Bridge C 2.4 in November 2007

74



C.11 Peak Strain vs. Time and Temperature in Region around Girders

Variation of maximum and minimum strain in the regions in abutment wall of A 1.7 is
plotted in Figure C-89 to Figure C-93. Similarly, variation of maximum and minimum strain in
the regions in abutment wall of A 2.1, C 2.1, and C 2.4 is plotted in Figure C-94 to Figure
C-100, Figure C-101 to Figure C-105, and Figure C-106 to Figure C-114, respectively.
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Figure C-89 Variation of peak strain in region 1 of Bridge A 1.7 with time and temperature
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Figure C-90 Variation of peak strain in region 2 of Bridge A 1.7 with time and temperature
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Figure C-91 Variation of peak strain in region 3 of Bridge A 1.7 with time and temperature
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Figure C-92 Variation of peak strain in region 4 of Bridge A 1.7 with time and temperature
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Figure C-93 Variation of peak strain in region 5 of Bridge A 1.7 with time and temperature
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Figure C-94 Variation of peak strain in region 1 of Bridge A 2.1 with time and temperature
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Figure C-95 Variation of peak strain in region 2 of Bridge A 2.1 with time and temperature
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Figure C-96 Variation of peak strain in region 3 of Bridge A 2.1 with time and temperature

Figure C-97 Variation of peak strain in region 4 of Bridge A 2.1 with time and temperature
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Figure C-98 Variation of peak strain in region 5 of Bridge A 2.1 with time and temperature

80



x 10° A 21 strain in region 6
2 \ \ \ ‘ ‘ 0.05

<
©
c
[¢b]
5 2
=] D
(2} N
IS 2
S 5
N =
= (O]
2 3
s E
o g
§
TK*3e-5 5
— /A — TA*3e-5 §

—@— Max Str

—& — Min Str

_2 | | | | | | | | | _005
1 2 3 4 5 6 7 8 9 10 11

Month in 2007

Figure C-99 Variation of peak strain in region 6 of Bridge A 2.1 with time and temperature
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Figure C-100 Variation of peak strain in region 7 of Bridge A 2.1 with time and temperature
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Figure C-101 Variation of peak strain in region 1 of Bridge C 2.1 with time and temperature
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Figure C-102 Variation of peak strain in region 2 of Bridge C 2.1 with time and temperature
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Figure C-103 Variation of peak strain in region 3 of Bridge C 2.1 with time and temperature
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Figure C-104 Variation of peak strain in region 4 of Bridge C 2.1 with time and temperature

83



x 10°

C 21 strain in region 5
-0.01

TK*3e-5
—/~ — TA*3e-5
—@&— Max Str
—6 — Min Str

peak horizontal strain

Figure C-105 Variation of peak strain in region 5 of Bridge C 2.1 with time and temperature
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Figure C-106 Variation of peak strain in region 1 of Bridge C 2.4 with time and temperature
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Figure C-107 Variation of peak strain in region 2 of Bridge C 2.4 with time and temperature
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Figure C-108 Variation of peak strain in region 3 of Bridge C 2.4 with time and temperature
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Figure C-109 Variation of peak strain in region 4 of Bridge C 2.4 with time and temperature
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Figure C-110 Variation of peak strain in region 5 of Bridge C 2.4 with time and temperature
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Figure C-111 Variation of peak strain in region 6 of Bridge C 2.4 with time and temperature
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Figure C-112 Variation of peak strain in region 7 of Bridge C 2.4 with time and temperature
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peak horizontal strain

Figure C-113 Variation of peak strain in region 8 of Bridge C 2.4 with time and temperature
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Figure C-114 Variation of peak strain in region 9 of Bridge C 2.4 with time and temperature
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C.111 Peak Strain vs. Time and Temperature in Region between Girders

Variation of maximum and minimum strain in the spacing in abutment wall of A 1.7 is
plotted in Figure C-115 to Figure C-119. Similarly, variation of maximum and minimum strain
in the regions in abutment wall of A 2.1, C 2.1, and C 2.4 is plotted in Figure C-120 to Figure
C-126, Figure C-127 to Figure C-131, and Figure C-132 to Figure C-136; respectively.
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Figure C-115 Variation of peak strain in spacing 1 of Bridge A 1.7 with time and temperature
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Figure C-116 Variation of peak strain in spacing 2 of Bridge A 1.7 with time and temperature
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Figure C-117 Variation of peak strain in spacing 3 of Bridge A 1.7 with time and temperature
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Figure C-118 Variation of peak strain in spacing 4 of Bridge A 1.7 with time and temperature
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Figure C-119 Variation of peak strain in spacing 1 of Bridge A 2.1 with time and temperature
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Figure C-120 Variation of peak strain in spacing 2 of Bridge A 2.1 with time and temperature

x 10° A 21 strain in spacing 3
2 T T T T T 0

5

[%2)

©

c

)

9]

-0.02 8

(@)

c

£ 8
g E
2 3
g 8
o) 0.04
N I
5] @
< °
= (0]
g 5
= >
2

TK*3e-5 -0.06 a

\/ —/~ — TA*3e-5 %5

@) @ Max Str GUJ)

~ H [

—< — Min Str o

(@)

2 ! ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

Month in 2007

-0.08
11

Figure C-121 Variation of peak strain in spacing 3 of Bridge A 2.1 with time and temperature
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Figure C-122 Variation of peak strain in spacing 4 of Bridge A 2.1 with time and temperature
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Figure C-123 Variation of peak strain in spacing 5 of Bridge A 2.1 with time and temperature
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Figure C-124 Variation of peak strain in spacing 6 of Bridge A 2.1 with time and temperature
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Figure C-125 Variation of peak strain in spacing 1 of Bridge C 2.1 with time and temperature
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Figure C-126 Variation of peak strain in spacing 2 of Bridge C 2.1 with time and temperature
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Figure C-127 Variation of peak strain in spacing 3 of Bridge C 2.1 with time and temperature
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x 10° C 21 strain in spacing 4
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Figure C-128 Variation of peak strain in spacing 4 of Bridge C 2.1 with time and temperature
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Figure C-129 Variation of peak strain in spacing 1 of Bridge C 2.4 with time and temperature
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Figure C-130 Variation of peak strain in spacing 2 of Bridge C 2.4 with time and temperature
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Figure C-131 Variation of peak strain in spacing 3 of Bridge C 2.4 with time and temperature
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Figure C-132 Variation of peak strain in spacing 4 of Bridge C 2.1 with time and temperature
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Figure C-133 Variation of peak strain in spacing 5 of Bridge C 2.1 with time and temperature
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Figure C-134 Variation of peak strain in spacing 6 of Bridge C 2.1 with time and temperature
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Figure C-135 Variation of peak strain in spacing 7 of Bridge C 2.1 with time and temperature
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x 10° C 24 strain in spacing 8
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Figure C-136 Variation of peak strain in spacing 8 of Bridge C 2.1 with time and temperature
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D. Temperature Fields in FE Simulation

In the finite element simulation of this research (Chapter 5), the temperature fields applied to
bridge models were simplified in order to make the simulation of a large number of models
feasible. Three simplification approaches and there verification were presented here in this

chapter.
D.l Constant Temperature Field in the Deck
D.I.1 Simplification approach

To simplify the application of the temperature gradient to the FE models, the temperature in
the deck was assumed to be constant throughout its thickness, so was the temperature in the other
parts of the bridge. Thus, the temperature gradient for steel bridges in Figure 5-14 was
transformed to the simplified gradient in Figure D-1 by equating the areas under the temperature

curves of both figures. The calculation is as follows:

%><3O><4+%><(11+6.4)><5+11><4:9><T4

T,=16.4 °F

The temperature gradient in winter is obtained by multiplying the summer gradient by -0.3,

which is T4 = -0.3xT4 = -4.9 °F. Temperatures at the other parts of the structure are calculated as:

Te _A-S
11 A
T, =T, =64 °F

In winter time, the temperature in the other part of bridge are taken as Te=Ts=-0.3xTg = -
1.9 °F.

101



T1=4£’F T.=16.4°F

»‘4«

T.=11°F

\
Average @
———

Depth of superstructure

T =6.4°F

Deck

T.=6.4°F

Figure D-1 Simplification of temperature gradient for steel bridges

Similarly, the temperature gradient for concrete bridges in Figure 5-14 was transformed to

the simplified gradient shown in Figure D-2. The calculation is as follows:

i><30><4+4><11+£><5>< 1lxi +5><11><l:9><T4
2 2 12 12

T,=16.4 °F

The temperature gradient in winter is the temperature in summer multiplied by —0.3, which is

T, =-0.3xT, = -4.9 °F. The depth of the concrete superstructure is taken to be the average depths

of Type I, 11, 11l and 1V prestressed I-beams plus the deck thickness:

d= %(28+ 36 +45+54)=40.75 (in.)

Temperatures at the other parts of the structure are calculated as:

2
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T5=0.6 °F

The temperature gradient in winter is the temperature in summer multiplied by —0.3, which is
Ts = -0.3xT5 = -0.2 °F.
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Figure D-2 Simplification of temperature gradient for concrete bridges

D.1.2 Verification of simplified temperature gradient (constant deck temperature)

The effects of the simplified temperature gradient were compared to the LRFD temperature
gradient using the example provided by MDOT. The nonlinear thermal stresses induced by
simplified temperature gradient on the 48” deep x 24” concrete beam in the examples were
calculated and the results are shown in Figure D-3. The temperature value T3 in the example was

changed to be zero, which is the value used in this research.
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Figure D-3 Comparison stresses induced by actual and simplified temperature gradients

D.Il Linear Temperature Gradient in the Deck
D.11.1 Simplification approach

Another approach to a simplified temperature gradient was to assume that the temperature
distribution in the deck was linear and the temperature field in other parts of the bridge was
constant. Thus, the temperature gradient for steel bridges in Figure 5-14 was transformed to the
simplified gradient shown in Figure D-4 Simplification of temperature gradient for steel bridges

by equating the areas under the temperature curves of both figures. The calculation is as follows:
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[%x30x4}+[%x(11—6.4)><5}+[(11—6.4)x4] =%x9x(T4 —6.4)

T4=26.4°F

The temperature gradient in winter is obtained by multiplying the summer gradient by 0.3,

which is T4 = -0.3xT4 = -7.9 °F. Temperatures at the other parts of the structure are calculated as:

Te _A-S
11 A
T, =T, =64 °F

In winter time, the temperature in the other parts of the bridge is taken as:

Te=Ts=-0.3xTg=-1.9 °F

e T. = A1°F T.= 26.4°F
g1 <]
21 T.=11F
()
[«B} H
=1 Average ©
———
S Deck
S
o
3 T, = 6.4°F T. = 6.4°F

Figure D-4 Simplification of temperature gradient for steel bridges
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Similarly, the temperature gradient for concrete bridges in Figure 5-14 was transformed to
the simplified gradient shown in Figure D-2. The calculation is as follows:

l><30><4}+[4><11]+ 1><5><(11><£j + 5><11><l = 1><9><(T4—O.6) +[0.6x9]
2 2 12 12 2
T,=32.2°F

The temperature gradient in winter is the temperature in summer multiplied by —0.3, which is
T4 =-0.3xT, = -9.7 °F. The depth of the concrete superstructure is taken to be the average depths
of Type I, II, 11l and 1V prestressed | beams plus the deck thickness:

d= %(28+ 36 +45+54)=40.75 (in.)

Temperatures at other parts of the structure are calculated as:

1><7><(11><1):d xT,
2 12

T5=0.6 °F

The temperature gradient in winter is the temperature in summer multiplied by —0.3, which

Ts = -0.3xTs = -0.2 °F.
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Figure D-5 Simplification of temperature gradient for concrete bridges

D.11.2 Verification of simplified temperature gradient (linear deck temperature)

The effects of the simplified temperature gradient are compared to the LRFD temperature
gradient using the example provided by MDOT. The nonlinear thermal stresses induced by the
simplified temperature gradient on the 48” deep x 24” concrete beam in the examples were
calculated and the results are shown in Figure D-6. The temperature value T3 in the example is

changed to be zero, which is the value used in this research.
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‘—O—LRFD temperature gradient ‘ ‘—O—Simplified temperature gradient
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Figure D-6 Comparison stresses induced by the actual and simplified temperature gradients

D.111 Linear Temperature Field with Temperature at the Top of the Deck unchanged
D.111.1 Simplification approach

The third temperature field proposed is also a linear temperature field throughout deck
thickness. The temperature at the top of the deck is taken to be the value of the LRFD value. The
temperature at the bottom of the deck is taken to be same as the simplified value of the rest of the
structure (the temperature in concrete girder is taken to be zero for this simplification approach.)
The simplified temperature fields for steel and concrete structure are shown in Figure D-7 and

Figure D-8 respectively.
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T.= 41°F T.= 41°F

.= 11°F

Simplify
————

Te=64°F

Depth of superstructure

Figure D-7 Simplification of temperature gradient for steel bridges

| L = 41°F T. = 41°F

T.=11°F

Simplify
 ———

12

Deck

Depth of superstructure

T.=O0F Ts=0°F

Figure D-8 Simplification of temperature gradient for concrete bridges

D.111.2Verification of simplified temperature gradient (constant deck temperature)

The effects of the simplified temperature gradient were compared to the LRFD temperature
gradient using the example provided by MDOT. The nonlinear thermal stresses induced by
simplified temperature gradient on the 48” deep x 24” concrete beam in the examples were
calculated and the results are shown in Figure D-9. The temperature value T3 in the example was

changed to be zero, which is the value used in this research.

109
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Figure D-9 Comparison stresses induced by the actual and simplified temperature gradients

D.1V Verification Results Summary

The comparison of temperature-induced axial strains and curvatures is shown in Table D-1. It
can be determined from Figure D-6 and Table D-1 that the simplified linear temperature gradient

is a reasonable approximation of the LRFD temperature gradient.
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Table D-1 Comparison axial strains and curvatures induced by temperature gradient

Temperature field Axial strain Strain error ratio Curvature Curvature error ratio
LRFD 2.13E-05 -2.20E-06

Constant in the deck 2.13E-05 0.2% -1.81E-06 17.6%
Linear gradient in the deck 2.14E-05 0.6% -1.99E-06 9.5%
Linear gradient in the deck 2 31E-05 8.5% -2 52E-06 14.5%

(with original top value)

D.V Temperature Values in the Simulation

It can be determined from Table D-1 that the approximation is better when using linear
temperature gradient in the deck and constant temperature field in the other part of the structure
based on the equivalence of the areas under the temperature curves. The values for the

simulations are summarized in Table D-2.

Table D-2 Temperature values for linear temperature gradient in the deck

Structures (Members) Construction Winter (Fahrenheit ~ Summer (Fahrenheit

(Fahrenheit degree) degree) degree)

Top of the deck 60.0 -37.9 146.4

Steel Bridge
Other members 60.0 -31.9 126.4
Top of the deck 60.0 -9.7 112.2
Concrete Bridge
Other members 60.0 -0.2 80.6
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E. Finite Element Simulation Results

A complete set of finite element simulation (Chapter 5) results was presented in this chapter.

Bridges of each main structural type were organized in a separate section.
E.l Simple or Cantilevered Steel Bridges

The largest maximum principal stresses in the specified region of abutment walls of
simple/cantilevered steel bridges were shown in this section, Figure E-1 to Figure E-6 show
bridges with deck width of 42.5 ft, Figure E-7 to Figure E-12 and Figure E-13 to Figure E-18
show bridges with deck width of 58.5 ft and 74.5 ft; respectively. The largest horizontal strains
in the specified region of abutment walls of simple/cantilevered steel bridges were also plotted in
this section, Figure E-19 to Figure E-24 show bridges with deck width of 42.5 ft, Figure E-25
to Figure E-30 and Figure E-31 to Figure E-36 show bridges with deck width of 58.5 ft and
74.5 ft; respectively.

Stress in the abutment wall width = 42.5 ft pavement free moving pin

35-
@+ Span 40 ft
--EF- Span 80 ft
30| =-%F-= Span 100 ft
Span 120 ft
—A— Span 140 ft
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.
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.
o
o
s,
o3
o

=
(63}
T

Maximum principal stress (ksi)
N
o

10

1 1 L L L |
10 20 30 40 50 60
Skew angle (Degree)

Figure E-1 Maximum stress of bridges under pavement pressure (width = 42.5 ft, free moving pin
and hanger)
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Stress in the abutment wall width = 42.5 ft pavement locked pin
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Maximum principal stress (ksi)

20 30 40 50 60
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Figure E-2 Maximum stress of bridges under pavement pressure (width = 42.5 ft, pin and hanger

locked)
Stress in the abutment wall width = 42.5 ft summer free moving pin
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Figure E-3 Maximum stress of bridges under summer temperature (width = 42.5 ft, free moving pin

and hanger)
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Maximum principal stress (ksi)

Figure E-4 Maximum stress of bridges under summer temperature (width = 42.5 ft, pin and hanger

Maximum principal stress (ksi)

Figure E-5 Maximum stress of bridges under winter temperature (width = 42.5 ft, free moving pin

Stress in the abutment wall width = 42.5 ft summer locked pin
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Stress in the abutment wall width = 42.5 ft winter free moving pin
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Stress in the abutment wall width = 42.5 ft winter locked pin
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Figure E-6 Maximum stress of bridges under winter temperature (width = 42.5 ft, pin and hanger

locked)

Stress in the abutment wall width = 58.5 ft pavement free moving pin
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Figure E-7 Maximum stress of bridges under pavement pressure (width = 58.5 ft, free moving pin
and hanger)
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Stress in the abutment wall width = 58.5 ft pavement locked pin
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Figure E-8 Maximum stress of bridges under pavement pressure (width = 58.5 ft, pin and hanger

locked)
Stress in the abutment wall width = 58.5 ft summer free moving pin
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Figure E-9 Maximum stress of bridges under summer temperature (width = 58.5 ft, free moving pin
and hanger)
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Stress in the abutment wall width = 58.5 ft summer locked pin
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Figure E-10 Maximum stress of bridges under summer temperature (width = 58.5 ft, pin and
hanger locked)

Stress in the abutment wall width = 58.5 ft winter free moving pin
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Figure E-11 Maximum stress of bridges under winter temperature (width = 58.5 ft, free moving pin
and hanger)
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Stress in the abutment wall width = 58.5 ft winter locked pin
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Figure E-12 Maximum stress of bridges under winter temperature (width = 58.5 ft, pin and hanger

locked)

Stress in the abutment wall width = 74.5 ft pavement free moving pin
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Figure E-13 Maximum stress of bridges under pavement pressure (width = 74.5 ft, free moving pin
and hanger)
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Figure E-14 Maximum stress of bridges under pavement pressure (width = 74.5 ft, pin and hanger
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Figure E-15 Maximum stress of bridges under summer temperature (width = 74.5 ft, free moving

pin and hanger)
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Stress in the abutment wall width = 74.5 ft summer locked pin
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Figure E-16 Maximum stress of bridges under summer temperature (width = 74.5 ft, pin and
hanger locked)

Stress in the abutment wall width = 74.5 ft winter free moving pin
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Figure E-17 Maximum stress of bridges under winter temperature (width = 74.5 ft, free moving pin
and hanger)
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Stress in the abutment wall width = 74.5 ft winter locked pin
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Figure E-18 Maximum stress of bridges under winter temperature (width = 74.5 ft, pin and hanger
locked)

x 10° Strain, width = 42.5 ft pavement free moving pin
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Figure E-19 Maximum strain of bridges under pavement pressure (width = 42.5 ft, free moving pin
and hanger)
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x 10 Strain in the abutment wall width = 42.5 ft pavement locked pin
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Figure E-20 Maximum strain of bridges under pavement pressure (width = 42.5 ft, pin and hanger
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Figure E-21 Maximum strain of bridges under summer temperature (width = 42.5 ft, free moving
pin and hanger)
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x 10 Strain in the abutment wall width = 42.5 ft summer locked pin
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Figure E-22 Maximum strain of bridges under summer temperature (width = 42.5 ft, pin and
hanger locked)
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Figure E-23 Maximum strain of bridges under winter temperature (width = 42.5 ft, free moving pin
and hanger)
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Maximum horizontal strain

Figure E-24 Maximum strain of bridges under winter temperature (width = 42.5 ft, pin and hanger
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Figure E-25 Maximum strain of bridges under pavement pressure (width = 58.5 ft, free moving pin
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x 10 Strain in the abutment wall width = 58.5 ft pavement locked pin
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Figure E-26 Maximum strain of bridges under pavement pressure (width = 58.5 ft, pin and hanger

locked)
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Figure E-27 Maximum strain of bridges under summer temperature (width = 58.5 ft, free moving
pin and hanger)
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x 10 Strain in the abutment wall width = 58.5 ft summer locked pin
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Figure E-28 Maximum strain of bridges under summer temperature (width = 58.5 ft, pin and
hanger locked)
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Figure E-29 Maximum strain of bridges under winter temperature (width = 58.5 ft, free moving pin
and hanger)
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Maximum horizontal strain

Figure E-30 Maximum strain of bridges under winter temperature (width = 58.5 ft, pin and hanger
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Figure E-31 Maximum strain of bridges under pavement pressure (width = 74.5 ft, free moving pin
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x 10" Strain in the abutment wall width = 74.5 ft pavement locked pin

----0--- Span 40 ft
6.5 | =—EF= Span 80 ft
=-5-= Span 100 ft
Span 120 ft
6/ —A— Span 140 ft

Maximum horizontal strain

Skew angle (Degree)

Figure E-32 Maximum strain of bridges under pavement pressure (width = 74.5 ft, pin and hanger

locked)
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Figure E-33 Maximum strain of bridges under summer temperature (width = 74.5 ft, free moving
pin and hanger)
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x 10 Strain in the abutment wall width = 74.5 ft summer locked pin
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Figure E-34 Maximum strain of bridges under summer temperature (width = 42.5 ft, pin and
hanger locked)
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Figure E-35 Maximum strain of bridges under winter temperature (width = 42.5 ft, free moving pin
and hanger)
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x 10 Strain in the abutment wall width = 74.5 ft winter locked pin
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Figure E-36 Maximum strain of bridges under winter temperature (width = 42.5 ft, pin and hanger
locked)

E.Il Continuous Steel Bridges

The largest maximum principal stresses and the largest horizontal strains in the specified
region of abutment walls of continuous steel bridges were shown in this section, Figure E-37 to
Figure E-42 show bridges with deck width of 42.5 ft, Figure E-43 to Figure E-48 and Figure
E-49 to Figure E-54 show bridges with deck width of 58.5 ft and 74.5 ft; respectively.
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CS stress(pavement) Abutment wall width = 42.5 ft
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Figure E-37 Maximum stress of continuous steel bridges under pavement pressure (width = 42.5 ft)
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Figure E-38 Maximum strain of continuous steel bridges under pavement pressure (width = 42.5 ft)
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CS stress(summer) Abutment wall width = 42.5 ft
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Figure E-39 Maximum stress of continuous steel bridges under summer temperature (width =42.5
ft)

CS stress(winter) Abutment wall width = 42.5 ft
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Figure E-40 Maximum stress of continuous steel bridges under winter temperature (width = 42.5 ft)
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x 10™ CS strain(summer) Abutment wall width = 42.5 ft
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Figure E-41 Maximum strain of continuous steel bridges under summer temperature (width =42.5

ft)
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Figure E-42 Maximum strain of continuous steel bridges under winter temperature (width = 42.5 ft)
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CS stress(pavement) Abutment wall width = 50.5 ft
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Figure E-43 Maximum stress of continuous steel bridges under pavement pressure (width = 50.5 ft)

CS stress(summer) Abutment wall width = 50.5 ft
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Figure E-44 Maximum stress of continuous steel bridges under summer temperature (width =50.5
ft)
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CS stress(winter) Abutment wall width = 50.5 ft
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Figure E-45 Maximum stress of continuous steel bridges under winter temperature (width = 50.5 ft)

x 10° CS strain(pavement) Abutment wall width = 50.5 ft
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Figure E-46 Maximum strain of continuous steel bridges under pavement pressure (width = 50.5 ft)
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x 10™ CS strain(summer) Abutment wall width = 50.5 ft
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Figure E-47 Maximum strain of continuous steel bridges under summer temperature (width =50.5
ft)

x 107 CS strain(winter) Abutment wall width = 50.5 ft
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Figure E-48 Maximum strain of continuous steel bridges under winter temperature (width = 50.5 ft)
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CS stress(pavement) Abutment wall width = 58.5 ft
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Figure E-49 Maximum stress of continuous steel bridges under pavement pressure (width = 58.5 ft)

CS stress(summer) Abutment wall width = 58.5 ft
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Figure E-50 Maximum stress of continuous steel bridges under summer temperature (width =58.5
ft)
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CS stress(winter) Abutment wall width = 58.5 ft
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Figure E-51 Maximum stress of continuous steel bridges under winter temperature (width = 58.5 ft)
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Figure E-52 Maximum strain of continuous steel bridges under pavement pressure (width = 58.5 ft)
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x 10™ CS strain(summer) Abutment wall width = 58.5 ft
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Figure E-53 Maximum strain of continuous steel bridges under summer temperature (width =58.5

ft)
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Figure E-54 Maximum strain of continuous steel bridges under winter temperature (width = 58.5 ft)
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E.111 Prestressed Concrete Bridges with I girder

The largest maximum principal stresses and the largest horizontal strains in the specified
region of abutment walls of prestressed concrete bridges were shown in this section, Figure E-55
to Figure E-60 show bridges with deck width of 42.5 ft, Figure E-61 to Figure E-66 and Figure
E-67 to Figure E-72 show bridges with deck width of 58.5 ft and 74.5 ft; respectively.
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Figure E-55 Maximum strain of prestressed concrete bridges under pavement pressure (width =
42.5 ft)
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PC stress(pavement) Abutment wall width = 42.5 ft
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Figure E-56 Maximum stress of prestressed concrete bridges under pavement pressure (width =
42.5 ft)

PC stress(summer) Abutment wall width = 42.5 ft
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Figure E-57 Maximum stress of prestressed concrete bridges under summer temperature (width =
42.5 ft)
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PC stress(winter) Abutment wall width = 42.5 ft

R,
K4 KN
k4 RS
0.22+ Y \\
/, N,
K4 \’\
=~ 0.2¢ / \\
i‘m/ / e | N,
n V4 ’/ \\\ N, .
fa’é 0.18 s V o .
TU; I' ,', Q‘.,. \\\\ V
(o} / O S
5 0.16 - / S T ~
= / ’ N
= / // ....... s\\
, .'.. g
£ o) oSS T
E S "o
é NS U —V /I'
= 0.1%?.—-“' /I g
_____ o -==-@-+- Span 60 ft
0.1@F---""""" & -=-EF- Span 80 ft
.......................... o) .5+ Span 100 ft
0.089- ‘ ‘ ‘ L ! ! I ! |
0 5 10 15 20 25 30 35 40 45

Skew angle (Degree)
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x 107 PC strain(winter) Abutment wall width = 42.5 ft
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Figure E-60 Maximum strain of prestressed concrete bridges under winter temperature (width =
42.5 ft)

PC stress(pavement) Abutment wall width = 58.5 ft
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Figure E-61 Maximum stress of prestressed concrete bridges under pavement pressure (width =
58.5 ft)
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x 107 PC strain(pavement) Abutment wall width = 58.5 ft
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Figure E-62 Maximum strain of prestressed concrete bridges under pavement pressure (width =
58.5 ft)

x 107 PC strain(summer) Abutment wall width = 58.5 ft
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Figure E-63 Maximum strain of prestressed concrete bridges under summer temperature (width =
58.5 ft)
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Figure E-64 Maximum stress of prestressed concrete bridges under summer temperature (width =

58.5 ft)
PC stress(winter) Abutment wall width = 58.5 ft
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Figure E-65 Maximum stress of prestressed concrete bridges under winter temperature (width =

58.5 ft)
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x 10™ PC strain(winter) Abutment wall width = 58.5 ft
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Figure E-66 Maximum strain of prestressed concrete bridges under winter temperature (width =

58.5 ft)
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20
o°
o
o
= o
2 o
= (4
o 15¢ o‘«""
g I
7] ‘,‘t‘
® o
2 o
2 o
£ 0”
s A2 =@+ Span 60 ft
g ’ﬁp‘ ==BEF- Span 80 ft
% 10+ ;’} =-%7-= Span 100 ft
S 04
R
R
R4
rd
/
y 1 1 1 1 1 1 1 1 |
0 5 10 15 20 25 30 35 40 45

Skew angle (Degree)

Figure E-67 Maximum stress of prestressed concrete bridges under pavement pressure (width =

66.5 ft)

146



PC stress(summer) Abutment wall width = 66.5 ft

0.8
0751 ',V ..................... 74
X4
/
0.7 !
_ K ! oo -
7) ./ ,{Q. ..................
£ 065F S
n K4 R
8 I’, /.""‘
..3 0.6 - /s ‘.‘o
- '/ y ~
o " 4
g 0.55+ .,.’ .}’);
S 7 o «:@+=+ Span 60 ft
= 0.5+ .l~ ‘0.’,'
5 N o ==-B- Span 80 ft
% 0.45} SR o -%7=-- Span 100 ft
= ,x"“‘:‘;;’z
0.4r //'t“’.‘;‘:/
P od
0.35Y .
? L L L L L L L L |
0 5 10 15 20 25 30 35 40 45

Skew angle (Degree)

Figure E-68 Maximum stress of prestressed concrete bridges under summer temperature (width =

66.5 ft)
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Figure E-69 Maximum strain of prestressed concrete bridges under pavement pressure (width =
66.5 ft)
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x 10™ PC strain(summer) Abutment wall width = 66.5 ft
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Figure E-70 Maximum strain of prestressed concrete bridges under summer temperature (width =

66.5 ft)
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Figure E-71 Maximum strain of prestressed concrete bridges under winter temperature (width =

66.5 ft)

148



PC stress(winter) Abutment wall width = 66.5 ft
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Figure E-72 Maximum stress of prestressed concrete bridges under winter temperature (width =
66.5 ft)
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F. Bridge Abutment Diagnosis (SbNET) 1.2 User’s Manual

F.l Introduction

Bridge Abutment Damage Diagnosis (SbNET 1.2) is a program developed by Michigan State
University for the Michigan Department of Transportation (MDOT) as part of a research project
to determine the causes and provide methods to alleviate the damage of bridge abutment walls.
SbNET is a stand-along executable compiled from Matlab (Mathworks 2007) codes using a pre-
trained ensemble of networks described in Section 6.5 of the final research report (Burguefio and
Li 2008). SbNET can make predictions for new bridges using design parameters or for existing
bridges using the MDOT Bridge ID. The program estimates the bridge abutment rating given the
age of the bridge and provides a deterioration curve for the bridge service life. Output can be

saved in text files for further post-processing.

F.11 Installation
F.I1.1 Copy CD files to destination folder

Copy the files in the CD to the location where SbNET is to be executed.
F.I11.2 Set up MCRInstaller.

Install the Matlab Component Runtime (MCR) through the MCRInstaller. You need to have
administrative rights in the computer/account in order to do this installation. Double click to
open MCRInstaller and follow the InstallShield Wizard instructions. When prompted for the path

to install Matlab Component Runtime 7.6, provide the following:
C:\ProgramFiles\MATLAB\MATLAB Component Runtime\

After finishing the installation, the MCRInstaller file may be deleted.
F.11.3 Executing SbNET 1.2
SbNET12 can be run after the installation of MCR by double-clicking the sb12 console icon.

A shortcut to launch SONET12 can be created on the desktop by following steps: on the desktop
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right click mouse—New—Shortcut—Browse—select sb12 in the corresponding folder—OK—
Next—Finish.

F.111 User Interface
The user interface of SONET and how to use it will be illustrated using two examples.
F.111.1 Predict Using MDOT Bridge 1D
The first example is using MDOT bridge id as input, as shown in Figure F-1 and Figure F-2.
Step 1: Choose the Input Method

The first step is choosing input method: input 1 if you would like to predict the deterioration

curve for an existing MDOT highway bridge by input the bridge ID, refer to Figure F-1.
Step 2 Input Bridge ID

Quote mark needs to be included; the format needs to conform to Michigan Structure
Inventory and Appraisal Coding Guide and capital "S" must be used. An example input for this
step is: “82182053000S020’, as shown in Figure F-1.

SbNET will retrieve bridge information from the database and then predict the abutment
condition in the future and simulate the abutment condition in the past. The discrete integer
prediction values will be fitted to a smooth logistic curve. The exact prediction of bridge
abutment condition during 70 years of bridge life will be saved in the file "Exact_Prediction.txt",
the fitted prediction values will be saved in the file "Fitted_Prediction.txt". In these two txt files,
the first column is the age of bridge; the second column is the predicted abutment rating; the
third column is the lower limit of the confidence band; and the fourth column is the upper limit

of the confidence band.
Step 3 Options for Plotting Deterioration Curves

Three options are available in plotting the deterioration curves for the life cycle of bridges.

[1] The deterioration curve based on the integer, or exact, predictions, as shown in Figure
F-3.
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[2] The deterioration curve based on the smoothed predictions (Burguefio and Li 2008), as

shown in Figure F-4.

[3] The deterioration curve based on both the exact and the smoothed predictions, as shown

in Figure F-5.

“CB” in the legends of the figures means confidence band. The deterioration curves of the
bridge will be saved an “emf” images automatically and be available for later use even after the
program was closed. The location of those saved pictures is in the folder where the executable
file was placed. The manual inspection ratings for that bridge will also be retrieved from the
database and added to the plot. The software will retrieve current time from the computer and

make prediction for the current rating of the abutment wall of the highway bridge.

It is also possible that the program calculates an age for current rating smaller than the ages
for past manual inspections, as shown in Figure F-6. This is caused by the rebuilding of the

bridge rather than a bug in the software.
Step 4 More Predictions?

You will be asked whether you would like to make prediction for another bridge; input 1 if

you would, 2 if you would not like to make prediction for another bridge (Figure F-2).
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WELCOME to USE ShHET 1.2

—— A software in predicting abutment conditions of MDOT highway bhridges.

Please chooze input method: bridge id or design parameters:

[1]1 Bridge ID;
[2] Bridge design parameters.

Pleaze input Bridge ID.
=* Quote mark needs to be included. the format need to conform with Michigan
= Structure Inventory and Appraisal Coding Guide. Must wse Capital "8'.

821826530005 A20°

Retrieving bridge information from databasze ...

Ensemhle of networks iz szimulating the bhridge abutment condition ...

The current abutment rating of the MDOT highway bridge is:
Abhutment_Rating =

4

Pleazse input the type of the deterioration curve vou would like to plot.
[1]1 Deterioration curve based on exact predictions:
[2]1 Deterioration curve hased on smoothed predictions;
[3]1 Deterioration curves hased on hoth exact and smoothed predictions;

Figure F-1 Interface of SONET 1.2 (predict using bridge ID)




Pleasze input the type of the deterioration curve you would like to plot.
[1]1 Deterioration curve baszed on exact predictions;
[2]1 Deterioration curve bazed on zmoothed predictions;
[3]1 Deterioration curves based on both exact and smoothed predictions;

*=[f the current prediction showed an age smaller than manuwal inspection
#pecords, it signified that the bhridge had been rebuilt rather than a bug
#*in the software.

The deterioration curve of the bridge in concern has been saved
in the folder as emf image

Would wou like to plot another another type of deterioration curve?

[11 Yes;

Would wvou like to make prediction for another hirdge?

[1]1 Yes;

Figure F-2 Interface of SONET 1.2_ continued (predict using bridge ID)
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Figure F-3 An example of exact deterioration curve
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Figure F-4 An example of smoothed deterioration curve
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Figure F-5 An example of exact and smoothed deterioration curves
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Figure F-6 An example of current prediction prior to manual inspections
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F.111.2 Predict Using MDOT Bridge Design Parameters

The second example is using MDOT bridge design parameters as input, as shown in Figure
F-7.

Step 1: Choose the input method

As shown in Figure F-7, the first step is choosing input method: input 2 if you would like to
predict the deterioration of abutment wall for a highway bridge in design or an existing bridge

which is not included in the refined database.
Step 2: Input bridge design parameters

Following design parameters need to be input through the interface, as shown in Figure F-7
and Figure F-8.

> Bridge length (unit: foot): bridge length needs to be in the range of 30 ft to 3281 ft.

> Skew angle (unit: degree): skew angle needs to be no less than 0 degree and less than

90 degree.
> Bridge width (unit: feet): Bridge width needs to be in the range of 20 ft to 100 ft.
> Age (unit: year): Age of a bridge needs to be in the range of 0 year to 80 years.

> Average daily truck traffic (ADTT unit: truck): ADTT is the average daily truck traffic
volume for the inventory route. ADTT for a bridge shall be compatible with other
recorded items. For example, if the bridge roadway widths are recorded separately for
parallel bridges, then, ADTT also needs to be the separated recorded values. Please
refer to Items 29 and 190 of Michigan Structure Inventory and Appraisal Coding Guide
for details. In this software, ADTT value needs to be >= 100 & <= 30,000.

» State County code: State County code needs to conform to "Michigan Structure

Inventory and Appraisal Coding Guide (page 9).

> Approach surface type: 1 for bitumen approach surface; 2 for mixed approach surface;
3 for concrete approach surface; and 4 for those bridges the approach surfaces are not

known.
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» Structural type of the bridge: 1 for simple/cantilevered steel bridge; 2 for continuous
steel bridge; 3 for prestressed concrete bridge with I-girder; 4 for prestressed concrete
bridge with adjacent box girder; and 5 for prestressed concrete bridge with spread box

girder.

SONET will predict the abutment condition of the bridge in 70 years’ of life. The discrete
integer prediction values will be fitted to a smooth logistic curve. The exact prediction of bridge
abutment condition during 70 years of bridge life will be saved in the file "Exact_Prediction.txt",
the fitted prediction values will be saved in the file "Fitted_Prediction.txt". In these two txt files,
the first column is the age of bridge; the second column is the predicted abutment rating; the
third column is the lower limit of the confidence band; and the fourth column is the upper limit

of the confidence band.
Step 3 Options for Plotting Deterioration Curves

Three options are available in plotting the deterioration curves for the life cycle of bridges.
[1] The deterioration curve based on the exact predictions, as shown in Figure F-9.

[2] The deterioration curve based on the smoothed predictions (Burguefio and Li 2008), as

shown in Figure F-10.

[3] The deterioration curve based on both the exact and the smoothed predictions, as

shown in Figure F-11.

“CB” in the legends of the figures means confidence band. The deterioration curves of
the bridge will be saved an “emf” images automatically and be available for later use even after
the program was closed. The location of those saved pictures is in the folder where the
executable file was placed. The manual inspection ratings for that bridge will also be retrieved
from the database and added to the plot. Based on the age input by the user, the software will

also make prediction for the current rating of the abutment wall of the highway bridge.
Step 4 More Predictions?

You will be asked whether you would like to make prediction for another bridge (Figure
F-8;) input 1 if you would, 2 if you would not like to make prediction for another bridge.
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Please choosze input method: bridge id or design parameters:

[1]1 Bridge ID;
[2] Bridge design parameters.

Pleaze input the length of the bridgelft>.
#* Length needs to bhe >»= 38 ft & <= 3281 ft.

588

Please input the skew angle of the hridge{degreel.
#* Skew angle needs to he >= B degree & < 780 degree.

Please input the width of the bridgedft>.
# Width needs to be >= 28 ft & (= 1688 ft.

:5a

Please input the age of the bridgefyear.
* filge needs to he »>= B year & <= 80 year.

38

Please input the average daily truck traffic (ADIT> of the bridge.
ADTT iz the average daily truck traffic volume for the inventory route. ADTT
for a bridge shall bhe compatihle with other recorded items. For example, if
the bridge roadway widths are recorded separately for parallel bridges. then.
ADTT also needs to he the separated recorded values. Please refer to Items 27
and 198 of Michigan Structure Inventory and Appraizal Coding Guide for
details. In this software, ADIT value needs to he >= 100 & <= 310.08600.

18868

Please input the State County Code for the county where the bridge locates in.
= State County Code needs to conform with "Michigan Structure Inventory and
#* fippraizal Coding Guide C(page 7?>.

82

Pleasze input the approach surface type of the hridge.
[1]1 Bitumens;
[2]1 Mixed;
[3]1 Concrete;
[4]1 Unknown.

Figure F-7 Interface of SONET 1.2 (predict using bridge design parameters)




Flease input the structural type of the bridge.
[1]1 Simplescantilevered z=teel hridge:
[2]1 Continuous steel hridge:
[3]1 Prestressed concrete bridge with I-girders
[4]1 Presztressed concrete bridge with adjacent hox girder:
[5%]1 Prestressed concrete bridge with spread box girders;

Enzemble of networks is simulating the bridge abutment condition ...

The abutment rating of the highway bridge in condideration is:
Abutment_Rating =

Pleasze input the type of the deterioration curve you would like to plot.
[1]1 Deterioration curve bhased on exact predictions;
[2] Deterioration curve based on smoothed predictions;
[3]1 Deterioration curves haszed on hoth exact and smoothed predict

The deterioration curve of the bhridge in concern hasz been zaved
in the folder as emf image

Would you like to plot another another type of deterioration curve?

[11 Yes;
[2]1 Ho.

=2

Would you like to make prediction for another hirdge?

[1]1 Yes;
[2]1 Mo.

Figure F-8 Interface of SONET 1.2_continued (predict using bridge design parameters)
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Figure F-9 An example of exact deterioration curve
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Figure F-10 An example of smoothed deterioration curve
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Figure F-11 An example of exact and smoothed deterioration curves
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